Search results for " partial inner product space"

showing 2 items of 2 documents

Banach partial *-algebras: an overview

2019

A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.

Pure mathematicsMathematics::Functional AnalysisAlgebra and Number Theorypartial inner product spacesPartial *-algebra Banach partial *-algebra CQ*-algebra partial inner product space operators on Hilbert scale.Partial algebraPartial *-algebraspartial $*$-algebraCQ*-algebraspartial inner product spaceSettore MAT/05 - Analisi Matematica$CQ^*$-algebraBanach partial *-algebrasoperators on Hilbert scaleBanach partial $*$-algebra46J1008A55Analysis47L60Mathematics
researchProduct

PIP-Space Valued Reproducing Pairs of Measurable Functions

2019

We analyze the notion of reproducing pairs of weakly measurable functions, a generalization of continuous frames. The aim is to represent elements of an abstract space Y as superpositions of weakly measurable functions belonging to a space Z : = Z ( X , μ ), where ( X , μ ) is a measure space. Three cases are envisaged, with increasing generality: (i) Y and Z are both Hilbert spaces; (ii) Y is a Hilbert space, but Z is a pip-space; (iii) Y and Z are both pip-spaces. It is shown, in particular, that the requirement that a pair of measurable functions be reproducing strongly constrains the structure of the initial space Y. Examples are presented for each case.

Pure mathematicspartial inner product spacesMeasurable functionLogicGeneralizationreproducing pairs; continuous frames; upper and lower semi-frames; partial inner product spacesStructure (category theory)upper and lower semi-framecontinuous frameAbstract spaceSpace (mathematics)01 natural sciencesMeasure (mathematics)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences0101 mathematics010306 general physicsreproducing pairMathematical PhysicsMathematicscontinuous framesAlgebra and Number Theorylcsh:Mathematics010102 general mathematicsHilbert spaceupper and lower semi-frameslcsh:QA1-939reproducing pairssymbolsGeometry and TopologyAnalysis
researchProduct